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Executive Summary

This report explores the feasibility of Lilypond as a digital music format in the process of optical
music recognition and translation for full scores. A simple Convolutional Recurrent Neural Network
(CRNN) implementation was trained on Inventions by Johann Sebastian Bach, with intention for
test outputs of other Bach works to be analyzed for generalization in the Lilypond format. Overall,

an implementation of the Shi, et al. CRNN model was unsuccessful in providing Lilypond
predictions for analysis. However, current state-of-the-art CRNN with other digital music formats
provide an extensive survey of what is can be accomplished in full-score optical music recognition.
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1 INTRODUCTION

1.1 Initial Proposal

In the world of music or audio transcription/arrangement, the
complexity of sound and score data has allowed human perfor-
mance to remain the current state-of-the-art. Several factors
contribute to this circumstance: the number of potential audio
and score file types, ambiguity on how performance qualities
are notated, and overall inconsistencies between recordings
and their respective scores. Machine learning models, in turn,
have been a crucial step towards reducing these inconsis-
tencies. Their ability to learn the nonlinearities and artistic
qualities that otherwise plague audio computation have al-
lowed for noteworthy advancements such as WaveNet [10].
The remaining issue in the process of sound generation is the
amount of data available to train with. Worthwhile audio
data remains difficult to collect due to its large size and
potential copyright issues. In particular, trying to condition
off another medium is incredibly difficult as current datasets
lack the correlations necessary to streamline the audio tran-
scription process. Datasets such as MAESTRO [4] are close
to ideal results, but some intermediate steps are needed to
learn correlations between audio files and musical scores.

With the following conditions in mind, I propose an Image-
to-MIDI model to serve a few purposes. First, this model
serves to convert image data to relative musical data to a
high degree of accuracy. The process of converting MIDI
to an image is trivial, but the opposite is a known Optical
Music Recognition (OMR) problem in that the correlation
is nonexistent. Second, a highly reliable model of this type
is capable of serving as an intermediate step in future audio
computation endeavors, as the nontrivial nature of OMR is a
barrier for reliable model training between scores and other
types of audio data. Finally, a conversion of this type allows
for more flexible datasets because MIDI can be converted
into a number of other audio file types.

1.2 Known Limitations

Given the vast complexity of classical western music notation
and intricacies in notation/time alignment, the proposed
model maintins a rather pessimistic approach. That is, given
a small subset of musical data (among all notated music) and
some model, results can be expected to only match expected
outputs through one or more of: pitch, rhythm, duration, and
overall formatting. Existing research in OMR supports these
expectations. First, several digital notation systems exist for
music, including:

∙ Standards like MusicXML, Lilypond and MIDI,
∙ Software-specific formats from Musescore, Sibelius

and Finale,
∙ KERN from the Humdrum tool-set [8],
∙ Mayer, et al.’s Linearized MusicXML [6], and

∙ Contreras, et al.’s untitled ”end-to-end OMR” encod-
ing language [2].

Each format provides benefits and drawbacks towards
generalized OMR, but combined research efforts have yet
to hone in on a particular format. Second, current research
continues to limit its effective musical scope: constant genre,
time period composed, single vs. multi-line pieces, and single
vs. multiple measures, to name a few. These limitations are
to be expected as a means of balancing experiment accuracy
with the subset of musical notation to be recognized. However,
no paper to date has intended to capture a high accuracy
while completely generalizing the space of recognizable music.

Finally, the state-of-the-art for machine-learning-based
OMR lies in the implementation of Convolutional Recur-
rent Neural Networks (CRNN). This model type is preferred
over CNN for its ability to learn data as order-dependent
sequences- a crucial philosophy in parsing and understanding
musical scores in general. However, it should be noted that
CNNs are still viable for their non-order-dependent musical
problems, such as Nugroho and Zahra’s work on individual
note and duration recognition [7].

1.3 Research Questions

Despite low expectations for training and results, I believe
that a few questions can be posed and answered for the pur-
pose of bounding requirements on a larger, all-encompassing
Image-to-MIDI model:

RQ1 What forms of recognition can be expected from a
generalized CRNN implementation?

RQ2 How does Lilypond recognition compare against other
standard and custom music formats?

RQ3 What conflicts currently prevent state-of-the-art mod-
els from further generalization?

For RQ1, I aim to recover noticeable results regarding
the CRNN model’s ability to generalize sequences of data
from scores. Hence, whether or not order-dependent training
can pick up on note, rhythm or duration sequences will be
crucial to my final analysis. Next, promising results from
RQ1 will be compared against existing research to answer
RQ2. In particular, the generalized CRNN model’s abil-
ity to render score data as Lilypond (.ly) files is compared
against other notation systems to determine if a more com-
plex Lilypond-based model would be successful. Finally, for
RQ3, the results of CRNN model training are criticized on
what should be generalized or further implemented in order
to reliably translate score images into Lilypond data. This
research question refers to all-encompassing limitations such
as in 1.2 along with experiment-specific limitations.
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2 BACKGROUND

2.1 Optical Music Recognition

Current research in Optical Music Recognition (OMR) can
be placed in one of two categories:

∙ Symbol Recognition: the ability for a model to
recognize individual symbols on a score.

∙ Music Transcription: the ability for a model to
recognize and transcribe multiple symbols or long
passages into a new musical format.

The problem of Symbol Recognition is nearly identical
to that of text recognition with the exception of a separate
set of possible symbols. Additionally, unlike situations where
text is perfectly aligned for recognition, musical symbols need
to be recognized with respect to their shape and position
in order to achieve a high accuracy. All notes, for example,
have unique pitches dependent on their placement in a score,
(on a ”line” or ”space” in a staff, above or below a staff).
The playback of notes is also determined by surrounding
symbols such as accidentals (natural, sharp, flat), rhythmic
symbols (the type of duration, a ”dot” for an additional half
of that note’s duration). Finally, the highest level of context
is staff-related information, which includes clefs (treble, bass,
alto, tenor; determining the relation between note placement
and audible pitches), time signatures and key signatures (for
adding context for an entire piece of music).

On the other hand, Music Transcription encompasses the
entire Symbol Recognition problem, (iteratively for some
amount of sheet music) as well as problems with correlating
recognized symbols in sequence. On its own, Symbol Recogni-
tion could recognize every component of a piece of music, but
these results lack the ordered context necessary for transcrip-
tion. State-of-the-art transcription through machine learning,
as a result, has been dominated by the Convolutional Recur-
rent Neural Network (CRNN). Unlike CNNs, CRNNs make
use of recurrent layers, (such as bidirectional LSTM layers in
Shi, et al. [9]) in order to contextualize sequences of data for-
wards and backwards. These layers, along with attention cells
focused on deriving pitch, rhythm and durational context,
allow for CRNNs to recognize and output ordered sequences
of logical musical data.

Additionally, it is important to recognize that musical data
sequences are ordered along multiple dimensions. Contreras,
et al. provides an excellent diagram of this ordering in their
work with respect to how notes have a separate ”ordering”
from other symbols. State-of-the-art CRNNs, in turn, are
able to recognize this multi-dimensional ordering to a point,
(see 5.3.1) so long as specific elements of the music are kept
constant. In the case of most OMR research, the rhythms and
durations are kept constant across multiple voices, (unless
only a single voice is used).

2.2 Lilypond

Lilypond was chosen for dataset file representation as it main-
tains accurate translation between digital (MIDI) and visual
(image) notation systems [5]. In particular, translation from

Figure 1: multi-dimensional ordering in sheet mu-
sic [2].

Lilypond to MIDI is trivial, and Lilypond provides a more
intuitive representation of musical information compared to
raw bytes of MIDI data. This notation language consists of
multiple layers to separate score components:

∙ Document level: components related to page lay-
out and high-level musical details, (number of instru-
ments/tracks, score engraving information).

∙ Music level: components related to low-level mu-
sical details, (notes, rhythms, durations, key/time
signatures, tempo).

At the document level, aspects of a score that stay mostly
or completely constant throughout a piece are indicated by
specific, indent-sensitive keywords. For example, the number
of voices/instruments and respective number of staves are
initialized with the ∖𝑉 𝑜𝑖𝑐𝑒 and ∖𝑐𝑜𝑛𝑡𝑒𝑥𝑡 commands, while
high-level musical information is initialized by commands
such as ∖𝑡𝑖𝑚𝑒 for time signature, ∖𝑘𝑒𝑦 for key signature, and
∖𝑡𝑒𝑚𝑝𝑜 for performance speed in beats per minute.

At the music level, rhythmic musical symbols are notated
according to their pitches and relative time duration. pitches
are all characters 𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓, 𝑔, 𝑟, where 𝑟 is a ”rest” mean-
ing no pitch occurs. To ascend or descend in pitch beyond a
single musical ”octave,” the ′ and , characters are appended
to indicate one or more octave ascendings or descendings,
respectively. Pitches are also proceeded by a rhythmic value
representing its duration in time. These values are typically
powers of two, (but can technically be any positive integer),
and they dictate how long a pitch is played with respect to
the piece’s time signature. For example, a score with time
signature = 2/4 indicates that each measure has two beats,
and each beat is the length of a quarter note (hard-coded
in the denominator). In this case, the line ”𝑐4 𝑑4” would
represent two quarter (4) notes or a single measure in the
provided time signature. Additionally, notes without defined
durational values take on the previous note’s duration in a
line, so a series of equal-duration notes is represented by one
durational value. Finally, separations between measures are
made with ”|%𝑛”, marking the end of measure 𝑛. Figure 2
compares the rendering of a single staff of music with its
relative Lilypond notation. 1

1The time signature 𝐶 or ”common-time” is another common way of
writing 4/4.
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Figure 2: Lilypond (.ly) code and rendering.

Figure 3: General CRNN architecture, as modeled
by Shi, et al. [9].

3 EXPERIMENT

3.1 CRNN Model

The proposed Image-to-MIDI model is a smaller model ref-
erencing Shi, et al.’s pioneering work in the creation of
CRNNs [9]. The model itself consists of multiple two-dimensional
Convolutional/MaxPooling pairs for the purpose of extracting
features from the intial score images. Batch normalization lay-
ers are also applied to refine data recovered from the feature
extraction. Lastly, features are pushed through two bidirec-
tional LSTM layers- the recurrent layers of the model- for
data prediction with respect to ”sequences” of the images. In
this case, sequences of the image data are the pixel columns
of (𝑊 ×𝐻) images, where 𝑊 is the pixel width of standard
”letter” paper commonly used for scores, and 𝐻 is the height
of the image dependent on the overall ”length” of the music.

3.2 Data Specfications

MIDI data used for this experiment has been narrowed down
to strictly fifteen two-stave ”Inventions” by Johann Sebastian
Bach [1] to maintain rhythmic and compositional uniformity.

These works maintain relatively similar quantization schemes
(rhythms and durations of notes), are short, and have several
clear transcriptions for research, education, and entertain-
ment purposes.

Testing is performed against a handful of arbitrary ”pre-
ludes” and ”fugues,” also written by Bach. Limiting the
training and testing sets, (especially in a way that limits the
ability to calculate an overall accuracy), is purposefully done
in the context of this experiment. First, there are no expecta-
tions for relatively ”accurate” recreations of score images in
Lilypond. A proper training model would require extensive
tokenization for all symbolic details that help to render a
Lilypond file, which is outside of the scope of this research
endeavor. Rather, output is manually analyzed against its
correlated image to determine what musical or notational
qualities were generalized. Second, a broader dataset would
drastically complicate the CRNN model’s ability to general-
ize key features of score images. Focus on a single composer,
musical time period, and music ”type” (prelude, waltz, rondo,
etc.) allows the model to more quickly generalize aspects of
the subset of music, at the cost of potentially overfitting to
the subset.

3.3 Quantization Rendering

Similar to simple transformations performed on images, (rota-
tions, coloring, scaling), output for sheet music is determined
by both technical and musical constraints that don’t affect the
”performance” of the composition. In particular, when score
images are rendered from the Bach lilypond files, (trivially
translated from the Bach MIDI Index [1]), there is a required
”quantization” value which affects the rhythms and durations
visually. This quantization, designated 𝑄 ∈ Z+, represents
what specific note duration counts as a ”beat” within a given
score. Figure 5 lists the most common duration mappings
that occur within this experiment.

Drastic change of 𝑄 results in score images that appear
muddled or illegible despite conveying the same musical
information, as shown in Figure 6. In order to prevent drastic

shifts due to quantization, an optimal quantization �̂� is
calculated with

�̂� = max
𝑡∈MIDI events

𝜏 * 10−6

𝑡
* 𝑛 * floor(𝑑/4) (1)

where 𝑡 is the number of seconds for a MIDI event to occur,
𝜏 is the provided MIDI tempo in beats per microsecond,
and (𝑛, 𝑑) are the numerator and denominator, respectively,

of the piece’s time signature. Additionally, possible �̂� are
limited to powers of 2 greater than 0 in order to reduce
complication from compound time signatures, (where beats
are not represented by durations in Figure 5).

4 RESULTS

Due to technical conflicts with my intended dataset, (variable-
height images against Lilypong string data), the CRNN model
proved unsuccessful in training and producing any results
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Figure 4: Excerpt of Invention No.4; cropped/pre-
pared rendering of Invention No.8.

Figure 5: Table of common duration-integer map-
pings, from Francis Hamzagic [3].

Figure 6: Levels of quantization 𝑄 = (1, 32) in render-
ing, respectively.

in the Lilypond formatting language. While this result com-
plicates my analysis of Lilypond for machine learning, a
meta-analysis of state-of-the-art OMR research with CRNN
models still provides significant findings towards the previ-
ously mentioned research questions.

5 DISCUSSION

The following section details my meta-analysis of reference
work with respect to the previously mentioned research ques-
tions (RQ1-3).
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5.1 Model Generalization (RQ1)

Given the visual encoding aspects of Lilypond, a simple
CRNN model would struggle to accomplish several layers of
recognition at once. However, multiple simple CRNNs would
be successful in learning the Lilypond file schematic and
musical information provided that both levels are tokenized
and separated. The work of Nugroho and Zahra, for instance,
validates the ability of a simple CNN architecture to solely
recognize musical symbols in context [7].

With additional features and data preparation, CRNN
models are shown to accurately parse and transcribe full
scores of monophonic2 and homophonic 3 music [2]. In turn,
the additional preparation, which forcibly standardizes the
data to assist in training, sterilizes the diverse nuances that
come with all possible sheet music, including physical ag-
ing, printing error, different notation fonts, sizes and shapes
of scores, and the immense dictionary of musical symbols,
(standardized or unique to specific pieces of music).

5.2 Format Comparison (RQ2)

Lilypond is not, by all means, a perfect music formatting
language. Being a format focused on the visual clarity of
musical notation, I find that the aforementioned ”document
level” greatly hinders Lilypond from achieving basic recogni-
tion. In particular, additional keywords for the representation
and position of solely visual elements of a score, along with
their necessary language features like brackets and spacers,
strongly inhibit basic CRNN models from making noticeable
music generalizations.

More complex CRNN models and state-of-the-art work cur-
rently provides towards support for Lilypond in this context.
Mayer, et al.’s Linearized MusicXML [6], a specially-designed
superset of MusicXML, demonstrates how complex CRNNs
can accurately generalize document-level and music-level
data.

5.3 Model Criticism (RQ3)

My CRNN implementation, along with the CRNN models
for which my research references, are not without active bar-
riers preventing consistent musical generalization. In staying
consistent with my description of the Lilypond formatting
language, my critiques against CRNNs are categorized by
what further work should be done in order for music-level
and document-level generalizations to occur.

5.3.1 Music-level Generalization. The primary issue holding
current CRNN models back is their inability to generalize
to polyphonic 4 music. That is, state-of-the-art models fail
to solve the problem of recognizing and transcribing several
different ”voices” of music at the same time. Solutions related
to the separation of these voices, (i.e. removing sequences
as they are recognized from the original score), approach

2monophonic refers to having one voice of musical information.
3homophonic refers to having multiple voices of music sharing the
same note rhythms and durations.
4polyphonic refers to having multiple voices of music with different
rhythms and durations.

the homophonic algorithm, but they also introduce problems.
For instance, when a voice is removed, determining whether
intersecting voices were affected is rather difficult.

Additionally, a majority of OMR research relies on datasets
consisting of digital or digitized musical scores. This choice
for data is fair when considering that OMR models require
upwards of hundreds of scores for proper training [6], but
it also limits the diversity of scores and contexts that ML
transcription can be used for. In particular, standards for
scores have changed several times over centuries of music
history, yet the formatting of historical scores is often left
behind in modern transcriptions. The solution to this issue,
while partly related to current models, lies in the amount of
trainable data across all eras of classical music and the ability
to notate historical scores. Modern notation software, while
addressing current standards, thankfully includes typing for
historical symbols, but these symbols have yet to be properly
implemented in popular formatting languages. Historical
datasets are also quite possible, albeit as scanned images with
no manually-transcribed digital reference as of the current
day.

5.3.2 Document-level Generalization. At the document level,
the greatest issue plaguing OMR research is the lack of a
formatting language standard, or lack of similarity between
all formatting languages. Every formatting language has sepa-
rate means of conveying equivalent musical information based
on the user’s needs, (i.e. MIDI for real-time data, MusicXML
for web-related music, Lilypond for polished layouts). How-
ever, as the needs of users vary in the numerous niches of
music production, technology and composition, digital mu-
sic encoding and datasets slowly diminish the possibility of
standardization. While MIDI and MusicXML are currently
the most popular for datasets, both formats lack consistency
in rendering sheet music across all digital notation platforms.
I believe consistency on this front is crucial for reducing
variability in musical machine learning datasets. In partic-
ular, sheet music should ”look the same” regardless of the
formatting language it is imported from.

6 CONCLUSIONS

Overall, despite unsuccessful training of a simple CRNN
model on Lilypond data, the following meta-analysis proved
to be quite beneficial in analyzing the Lilypond formatting
language. Existing research from several CRNN papers con-
firms the viability of Lilypond as a format for machine learn-
ing, and I believe a combination of this, tokenization for
layout-related encoding, and active development of the lan-
guage would allow it to thrive in current research. I’m espe-
cially interested in seeing Lilypond extend into OMR research
as its backend contains useful tools for conversion to MIDI
and MusicXML, formats with plenty of existing datasets but
higher complexity in generalization.

In the future, I would like to focus on a tokenization system
for future Lilypond ML models, as this sudden obstacle was
the reason for the experiment being unsuccessful. Addition-
ally, given my interest in music notation and conversion to
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related formats, I am hoping to generate non-text-related
outputs from digital music data, including audio for perfor-
mances, video for artistic interpretation, and more scientific
metrics to bridge the gap between ”musical emotion” and
psychology.

7 CONFLICT OF INTEREST

My ongoing plans for thesis work, advised by Paris Smaragdis,
revolve around the generation of audio conditioned on score
images. While this report actively assists in my understand-
ing of the correlations between digital music formats and
computer vision, I do not believe that it trivializes any future
work in this topic.
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