Transcribing Monophonic Audio with Deep-Learning Data

Evan Matthews, Kevin Zhou Spring 2023

Overview

- The problem to solve
- Introduction to artificial intelligence
- The experiment
 - Setup
 - Gathering data
 - Results

Problem to solve

- We can convert sheet music -> audio (manually, MIDI, etc.)
- Some people can convert audio -> sheet music (manually by transcribing)
- Is it possible to automate the conversion from audio to sheet music?
- Reasons:
 - Transcribing process is tedious
 - Transcribing requires a good ear and perfect/relative pitch
 - Sheet music becomes a more open medium for singers/composers
 - The process of composing becomes much faster

How can we solve this problem?

Artificial Intelligence and deep-learning!

Introduction to Artificial Intelligence

- Suppose you are ChatGPT, and you are told
 f(x) = 3x+2
 - What is **f(1)**?
 - **f(3)**?
 - o **f(ζ)**?

Your accuracy: 66.67% X
 We can do a little better...

Introduction to Artificial Intelligence

- Suppose you are ChatGPT, and you are told
 f(x) = 3x+2, ζ = 3
 - What is **f(1)**?
 - **f(3)**?
 - **f(ζ)**?
 - o **f(ឋ)**?
- Your accuracy: 75.00% X
 Getting better…

Introduction to Artificial Intelligence

- Suppose you are ChatGPT, and you are told
 f(x) = 3x+2, ζ = 3, ϑ = 0
 - What is **f(1)**?
 - **f(3)**?
 - **f(ζ)**?
 - **f(**ປໍ)?
 - **f(訾**)?

Your accuracy: 87.25% ✓
 ○ ... and so on.

Deep-Learning Models

- Some types of artificial intelligence work by creating a statistical structure called a **deep-learning model**:
 - 1. Run a decent number of known relations through your model
 - 2. Test your model with more relations to obtain an accuracy
 - 3. Given a high average accuracy, implement your model

Why use deep-learning models?

A number of problems in computer science can't just be solved with existing relationships, (linear, exponential, etc.) Deep-learning models help estimate problems where the input and output are known, but the relationship is not. The **CIFAR-10 dataset**, for example, consists of 60,000 images of 10 "classes" of objects for classification.

airplane	the second second	-	X	*	1	2	-1		-
automobile				-	No.			-	*
bird		2			4	1		2	4
cat			50				Å.	A.S.	1
deer	1		RA		Y	Y	1		<u>8</u>
dog	SP6 6	R		1			13	A	N
frog	N			290		and a	5		
horse	the set	1	2	1	K TA	-	24	and and	T.
ship		-	-	144	-	2	127	and it	
truck							2-		

https://www.cs.toronto.edu/~kriz/cifar.html

Implementation - the AI "black box"

How do deep-learning models make choices?

- Answer: they don't!
- The "black box" of AI works based on *statistical frequency*, where a pattern among data, or a **feature**, being linked to specific result (word/phrase, image, another pattern, etc.) becomes the "choice" that the deep-learning model makes.

https://courses.grainger.illinois.edu/ cs440/fa2022/lectures/linear.html

Setup

- Problem: Can we *automate* the conversion from audio to sheet music?
- Goals:
 - Create a dataset of well-rounded MIDI files.
 - Create a web app for easily recording and uploading audio files to a database.
 - Collect several recordings per MIDI file.
 - Publish open-source database!
 - Running training/testing schemes on database (in the future)
 - Implement database as a deep-learning model (in the future)

Varieties

• Elements which should be recognized by a deep-learning model:

- Pitches:
 - Frequencies to MIDI note numbers
 - Enharmonics: model should understand that pitches have several note names, but it doesn't need to be accurate about which one to pick.
 - Accidentals: unless a key signature isn't given, notes should be reflective of their key signature, (proper use of sharps/flats).
- Rhythms:
 - Lengths of notes with respect to the notes around them.
 - Have to include ties! (between notes, measures, etc.)
- Dynamics:
 - Volume can be determined from recordings and scaled to pp -> ff.

Constraints

• Elements which are provided, given by the user, or aren't obvious enough:

- Time Signature:
 - There exists an infinite number of ways to write 4/4, 3/4, etc.
- Key Signature:
 - Maybe for some music, but not for avant-garde/modernist works!
- Score type:
 - Provided: monophonic (single staff/voice)
- Tempo:
 - Provided: slow, medium, fast tempos.
- "Inflections":
 - Rhythmic: grace notes, mordents, trills, etc.
 - Pitches: microtones, poor tuning, etc.

The Web App!

Data gathering

- Funding received from Association for Computing Machinery at UIUC.
 - Used for gift cards, which help incentivized students to participate.
- Contacted vocal faculty, choral groups, School of Music students.
- Data collection is actively going on!

Results

- Data collection has been a success!
- Currently, not enough data to construct an accurate learning model.
- Data collection will persist throughout Summer-Fall 2023.
- Additional step to take: validate every recording according to sheet music.
- Results and database to be published open-source through ACM@UIUC, Github on our personal pages.

Recap

- Problem to solve
- Introduction to Artificial Intelligence, Deep-Learning Models
- The Experiment
 - Setup
 - Gathering data
 - Results

Thank you!